Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Luiz Everson da Silva, ${ }^{\text {a }}$

 Antonio Carlos Joussef, ${ }^{\text {b }}$ Carla Regina AndrighettiFröhner, ${ }^{\text {b }}$ Cláudia Maria Olivra Simões ${ }^{\text {c }}$ and Adailton José Bortoluzzi ${ }^{\text {b* }}$${ }^{\text {a }}$ Departamento de Química-UFSC, 88040-900 Florianópolis, SC, Brazil, and, Clemens-SchöpfInstitut für Organische Chemie und Biochemie, Technische Universität Darmstadt,
Petersenstrasse 22, D-64287 Darmstadt, Germany, ${ }^{\text {b }}$ Departamento de Química-UFSC, 88040-900 Florianópolis, SC, Brazil, and ${ }^{\text {c }}$ Departamento de Ciências FarmacêuticasUFSC, 88040-900 Florianópolis, SC, Brazil

Correspondence e-mail: foro@tu-darmstadt.de

Key indicators

Single-crystal X-ray study
$T=299 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.116$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

5-(5-Ethyl-1,3,4-thiadiazol-2-ylaminomethylene)-2,2-dimethyl-1,3-dioxane- 4,6-dione

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$, the thiadiazole ring is nearly planar, while the 1,3-dioxane-4,6-dione ring exhibits a half-chair conformation. The NH group makes one intramolecular contact with a carbonyl group, forming a sixmembered ring. The same functional group is involved in an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond.

Comment

The determination of the structure of the title compound, (I), is part of a continuing study on conformational analysis in the solid state of Meldrum's acid derivatives (Joussef et al., $2005 a, b$), within a project to investigate potential antiviral and antiparasitic activities of these compounds.

(I)

In (I), the 1,3-dioxane-4,6-dione ring exhibits a half-chair conformation. The torsion angle $\mathrm{C} 5-\mathrm{N} 6-\mathrm{C} 7-\mathrm{C} 8$ is $179.9(2)^{\circ}$ and the distances $\mathrm{N} 6 \cdots \mathrm{C} 7$ and $\mathrm{C} 7 \cdots \mathrm{C} 8$ (Table 1) indicate delocalization of the conjugated system. The H atom of the NH group has one intramolecular contact to O9 (Table 2), forming an $S(6)$ ring. The delocalization of the N atom lone pair into the Meldrum's acid ring may be favoured in the direction of one of the two available carbonyl groups $\mathrm{C} 9=\mathrm{O} 9$ and $\mathrm{C} 13=\mathrm{O} 13$ (Blake et al., 2003). Finally, the same NH group is also involved in a weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ contact.

Experimental

The title compound was prepared according to a literature procedure (Cassis et al., 1985) and was recrystallized from methanol.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$	Mo $K \alpha$ radiation
$M_{r}=283.30$	Cell parameters from 25
Orthorhombic, Pbca	reflections
$a=10.733(2) \AA$	$\theta=5.4-13.7^{\circ}$
$b=9.842(1) \AA$	$\mu=0.26 \mathrm{~mm}^{-1}$
$c=24.650(2) \AA$	$T=299(2) \mathrm{K}$
$V=2603.9(6) \AA^{3}$	Prism, colourless
$Z=8$	$0.40 \times 0.40 \times 0.13 \mathrm{~mm}$
$D_{x}=1.445 \mathrm{Mg} \mathrm{m}^{-3}$	

Received 1 February 2006
Accepted 15 March 2006

Figure 1
The molecular structure of (I), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level for non-H atoms.

Data collection

Enraf-Nonius CAD-4	1700 reflections with $I>2 \sigma(I)$
\quad diffractometer	$\theta_{\max }=26.0^{\circ}$
$\omega-2 \theta$ scans	$h=-13 \rightarrow 0$
Absorption correction: ψ scan	$k=-12 \rightarrow 0$
(North et al., 1968)	$l=0 \rightarrow 30$
$T_{\min }=0.878, T_{\max }=0.974$	3 standard reflections
2543 measured reflections	every 200 reflections
2543 independent reflections	intensity decay: 1%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.116$
$S=1.04$
2543 reflections
173 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0539 P)^{2}\right. \\
& +0.4796 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\max }=0.22 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths (A).

S1-C5	$1.722(2)$	$\mathrm{N} 6-\mathrm{C} 7$	$1.334(3)$
$\mathrm{S} 1-\mathrm{C} 2$	$1.727(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.368(3)$

Table 2
Hydrogen-bond geometry ($\left(\mathrm{A},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N6-H6 \cdots O9	0.93	2.04	$2.716(3)$	128
N6-H6 $\cdots \mathrm{N} 3^{\mathrm{i}}$	0.93	2.28	$3.098(3)$	146

Symmetry code: (i) $x-\frac{1}{2}, y,-z+\frac{3}{2}$.

Figure 2
The molecular packing of (I), with hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

All H atoms were positioned with idealized geometry and refined with fixed isotropic displacement parameters (set at $1.5 U_{\text {eq }}$ of the parent atom for methyl groups and at $1.2 U_{\text {eq }}$ of the parent atom for all others), using a riding model, with $\mathrm{N}-\mathrm{H}=0.93 \AA$ and $\mathrm{C}-\mathrm{H}=0.93$ (aromatic), 0.97 (methylene) or $0.96 \AA$ (methyl).

Data collection: CAD-4-PC (Enraf-Nonius, 1993); cell refinement: $C A D-4-P C$; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank Sabine Foro, TU-Darmstadt, Germany, for her help and advice.

References

Blake, A. J., McNab, H. \& Withell, K. (2003). Acta Cryst. E59, o841-o842.
Cassis, R., Tapia, R. \& Valderrama, J. A. (1985). Synth. Commun. 15, 125-129.
Enraf-Nonius (1993). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Joussef, A. C., da Silva, L. E., Bortoluzzi, A. J. \& Foro, S. (2005a). Acta Cryst. E61, o2642-o2643.
Joussef, A. C., da Silva, L. E., Bortoluzzi, A. J. \& Foro, S. (2005b). Acta Cryst. E61, o2873-o2874.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

